
Journal of Modern Technology and Engineering

Vol.3, No.3, 2018, pp.197-204

PROJECT INITIUM AND THE MINIMAL
CONFIGURATION PROBLEM

Douglas A. Lyon∗

Fairfield University, Fairfield, USA

Abstract. We are given a fully-qualified class name that contains a main method for launching an application,

in addition to a directory containing all the source files and a list of Jar files used in the larger project. We seek

to find, isolate and minimize a set of Java source and Jar files that are necessary and sufficient for compilation,

execution and dissemination of a Java system. Large projects are hard to compile and take a lot of computer and

human resources. The minimal dissemination system is important for teaching, packaging and deployment. This

paper describes a new feature of Project Initium. Initium is a Latin word that means: at the start.

Keywords: Java Deployment, Source Code Minimization, Packaging, Java Webstart, ClassPath Minimization,

Dependency Analysis.

Corresponding author: Douglas, Lyon, Fairfield University, ECSE Department, 1074 N. Benson Rd, Fairfield,

USA, Phone: 203-254-4000x3155, e-mail: dlyon@fairfield.edu

Received: 02 June 2018; Accepted: 12 September 2018; Published: 07 December 2018.

1 Introduction

Given a fully-qualified class name that contains a main method, a collection of Java source files
and Jar files, organized in a directory tree structure, we seek to find a minimal file set that is
both necessary and sufficient for compilation. We are subject to the constraint that the run-time
requires no additional resources (including data or libraries) and that we can run the program
without introducing errors. We call this the Minimal Configuration Problem and consider it the
next logical step in what we have termed; Project Initium. Initium is a Latin word that means:
at the start. Project Initium is a long and on-going project that deals with the deployment of
Java programs into a properly configured environment.

2 Motivation

We seek a minimal configuration deployment of a minimal set of Java source files, Jar files
and data files for the purpose of creating small self-contained programs. Most programs that
work on one machine and fail to port easily to another machine seem to fail because of the
run-time environment (i.e., the configuration is not correct). The minimization of source and
Jar resources encourages encapsulation of inter-object associations, makes explicit dependencies
on resources, speeds compilation, reduces maintenance costs and encourages creation of facade
design patterns. From an efficiency point-of-view, the start-up time is reduced as the class path
is minimized and thus easing the work of the class loader. One aspect of teaching Java includes
dissemination of source code to a heterogeneous group of students, many of whom get lost when
attempting to compile large projects. By giving them simpler systems to compile, they can focus
their attention on a smaller subset of code with a cleaner architecture.

197



JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.3, N.3, 2018

3 Historic review

In the past, project Initium has addressed several deployment problems. For example, there was
the problem of resigning already signed Jar files (Lyon, 2008), the problem of deploying a screen
saver for CPU scavenging, with mac, windows and Unix screen savers (Lyon & Castellanos,
2007), (Lyon & Castellanos, 2006a), (Lyon & Castellanos, 2006b), (Lyon & Castellanos, 2006c).

We have yet to find anything in the literature that addresses the minimal configuration
problem, though there are class-file minimization tools (Lyon, 2004).

4 The static dependency analysis approach

Static dependency analysis makes use of compiler output by forensic examination of the byte
codes in Java class files. The Byte Code Engineering Library (BCEL) enables the identification
of imports and packages that are present and referred to by a class that contains a main method
(Whaley et al., 2002). This class is selected using the Initium interface, as shown in Figure 1.

Figure 1: The Initium Interface

The interface allows us to select a class name using an open file dialog box to navigate to
the class file that contains the main method for the application. The BCEL allows us to obtain
the class name and this is populated in the text field of the graphic user interface. Recursive
exploration of the inter-class associations by the BCEL enables the packing of all the classes
in a single Jar file. The minimized Jar file contains a manifest and it is executable by a Java
runtime.

The minimal source file set is produced in a compressed file called src.jar by comparing the
source code tree with the classes in the executable Jar file. Code entities that refer to inner
reference types are excluded from the src.jar file as these are contained in the outer class files
source code.

The minimal Jar library set is produced via a class path analysis using a customized version
of the JDeps tool (Sharan, 2014). In this case, we include only those jars that are referred to
by the class files for which no source code exists. JDeps customization enabled its’ integration
with the Initium system, as shown in Figure 2.

Figure 2: The Optimize Source Menu Item

The final step is to emit a build.xml ant file that enables the compilation. The Jar file set is
minimized based on static dependency analysis.

198



DOUGLAS A. LYON: PROJECT INITIUM AND THE MINIMAL CONFIGURATION

5 Results and problems with static dependency analysis

For some cases, the system produces good results. For example, in one case, upon completion,
we obtain three files, build.xml, jars.jar and src.jar. For a simple audio playback application,
the src.jar contained 4 Java source files and the jars.jar file contained two Jar files. The original
project had 8,346 Java files and 219 jar files. This represents a 2,089 times reduction in source
files and a 100 times reduction in the number of jar files. The build is clean and we find that
the outcome is typically positive (faster compilation, ease of maintenance, faster start-up times,
etc.).

Static dependency analysis can trigger issues of improper configuration that can yield a
compile failure. Consider the following code:

File f = new File(

"/Users/lyon/current/java/data/audio/bong.au");

System.out.println(f); UlawCodec ulc = new UlawCodec(f); ulc.play();

Static dependency analysis fails to identify dependency on the audio file “bong.au”. Data
files located via an absolute path name pose tricky configuration issues during deployment. Code
data dependencies are a fruitful source of dissemination bugs and various run-time failures (i.e.,
FileNotFoundException). As this is a run-time failure, only dynamic analysis can detect the
problem.

Another use-case for failure includes dynamic class loading. Consider:

Class.forName("org.sqlite.JDBC");

The dependency on the JDBC driver cannot be detected at compile time by any normal
compilation process and thus a ClassNotFoundException will be thrown at run-time.

Other use-cases for failure include reflection based coding that makes use of the annotation API,
as described in (Lyon, 2010). For example:

Annotation a[] = c.getAnnotations();

6 Dynamic dependency analysis

The afore mentioned configuration issues demonstrate that static dependency analysis is impov-
erished when faced with dynamically loaded classes or resources. During the deployment phase,
missing resources will typically halt with an exception (i.e., ClassNotFoundException, or some
variant thereof). Using a Java Agent (Rodriguez-Prieto et al., 2018) we were able to obtain a
list of classes that are needed at run-time. The Java Agent instruments the JVM and makes a
list of what it is loading. The Instrumentation interface enables a listing of all loaded classes

One of the frameworks that we relied upon is the EA Agent Loader (EA). The Agent Loader
enables the writing and testing of Java agents that use dynamic agent loading without making
use of the –java agent jvm parameter (and thus attaching to a live JVM). The basic idea is that
a class with the signature of:

public class HelloAgentWorld{

public static class HelloAgent {

public static void agentmain(

String agentArgs, Instrumentation inst)

can be invoked with:

199



JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.3, N.3, 2018

public static void main(String[] args){

AgentLoader.loadAgentClass(

HelloAgent.class.getName(), "Hello!");

}

The loadAgentClass method loads the Java agent dynamically, thus dealing with the problem
of finding the proper JVM class. In practice, we optimize our project (including the Jar file set)
using the following code:

final String mainClassName = "audio.UlawCodec"; final String

sourceRootDirectory

= "/Users/lyon/current/java/j4pCode/src";

final String sourceOutputDirectory

= "/Users/lyon/attachments/ulawProject/src/";

final String classFileDirectory

= "/Users/lyon/current/java/j4pCode/out/production" +

"/j4p";

final String jarRootDirectory

= "/Users/lyon/current/java/j4pCode/jars/";

final String jarOutputDirectory

= "/Users/lyon/attachments/ulawProject/jars/";

AgentLoader.loadAgentClass(ddaa.class.getName(), "");

File srdf = new File(sourceRootDirectory); File sodf = new

File(sourceOutputDirectory); File jodf = new

File(jarOutputDirectory); final List<URL> urls = DynamicAnalyzerUtil

.populateLibrariesAndSourceFiles(

new File(jarRootDirectory), new File

(classFileDirectory));

final DynamicDependencyAnalyzer ddaa

= new DynamicDependencyAnalyzer(mainClassName,

srdf, sodf, jodf,

urls);

An instrument is passed the classLoaderContext by the run-time:

public class DDAInstrument {

private static Instrumentation instrumentation=null;

public static void agentmain(final String agentArgument,

final Instrumentation inst) {

instrumentation = inst;

}

public static Instrumentation getInstrumentation(Class cls)

throws NoSuchMethodException, InvocationTargetException,

IllegalAccessException {

final Method meth = cls.getMethod("main", String[].class);

final String[] params = null;

meth.invoke(null, (Object) params);

return instrumentation;

}

}

200



DOUGLAS A. LYON: PROJECT INITIUM AND THE MINIMAL CONFIGURATION

The DDA Instrument instance uses the current class loader context to retrieve a list of all
the loaded classes and Jars, if and only if these things are loaded when the main is executed:

public File[] analyzeDynamicDependency(boolean hasSourceFile)

throws IOException, URISyntaxException,

InvocationTargetException, IllegalAccessException,

NoSuchMethodException, ClassNotFoundException {

ClassLoader cl= Thread.currentThread().getContextClassLoader();

final Instrumentation inst = DDAInstrument

.getInstrumentation(cl.loadClass(mainClassName));

Class[] initiatedClasses = inst.getInitiatedClasses(cl);

return processLoadedClasses(Arrays.asList(initiatedClasses),

hasSourceFile);

}

The processLoadedClasses contains the details of copying the needed source code and Jar
libraries into the target directories:

private File[] processLoadedClasses(final List<Class<?>> classes,

boolean sourceFile)

throws IOException {

// We don’t need duplicate files especially jar files

final Set<File> usedSourceFiles = new HashSet<>();

final Set<File> usedJarFiles = new HashSet<>();

for (Class<?> clazz : classes) {

if (clazz.getName().contains("$")) continue;

final ProtectionDomain

protectionDomain =

clazz.getProtectionDomain();

final CodeSource

codeSource =

protectionDomain.getCodeSource();

if (codeSource != null) {

final URL jarFileUrl = codeSource.getLocation();

if (jarFileUrl.getFile().endsWith(".jar")) {

File file = new File(jarFileUrl.getFile());

String outputFile = String.format("%s%s%s",

jarOutputDirectory,

File.separator,

file.getName()

);

copyFiles(file, new File(outputFile));

usedJarFiles.add(file);

} else {

String canonicalName = clazz.getCanonicalName();

if (canonicalName == null) continue;

String filePathUrl = mapClassToSource(

canonicalName);

String replace = canonicalName.replace(".",

File.separator

);

String outputFile = String.format("%s%s%s%s",

201



JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.3, N.3, 2018

sourceOutputDirectory,

File.separator,

replace, ".java"

);

copyFiles(new File(filePathUrl),

new File(outputFile)

);

usedSourceFiles.add(new File(filePathUrl));

}

}

}

return sourceFile ? usedSourceFiles.toArray(new File[0]) :

usedJarFiles.toArray(new File[0]);

}

Inner classes have names that contain a “$” and these are filtered out from our source file
set, as the inner classes are contained in the source files that hold the outer classes.

7 Problems with dynamic dependency analysis

We are given a main method that dynamically loads data and classes by making use of the
Class.forName and an external file reference:

public static void main(String[] args)

throws ClassNotFoundException {

Class.forName("org.sqlite.JDBC");

File f = new File(

"/Users/lyon/current/java/data/audio/bong.au");

System.out.println(f);

UlawCodec ulc = new UlawCodec(f);

ulc.play();

}

Our dynamic dependency analysis produced output that included:

/jars/sqlite-jdbc-3.16.1.jar

This indicated that we have addressed one of the major points of static dependency analysis;
given an execution of all paths that dynamically load external classes, we can be reasonably
assured that we will have the libraries that we need to run the code. The program has minimized
the source file set:

./src/audio/SimpleAudioPlayer.java

./src/audio/UlawCodec.java

Both programs are critical to execution. However, the downside is we have still not addressed
the data that we need to execute. The file:

"/Users/lyon/current/java/data/audio/bong.au"

will be missed by the dynamic examination of the classloader. There are several approaches to
solve such a problem. For example, we could bundle the resource into the source code (Lyon,

202



DOUGLAS A. LYON: PROJECT INITIUM AND THE MINIMAL CONFIGURATION

2005). Such an approach UUEncodes the data into the source file. This approach has the
advantage of making sure the data needed by the object is geographically co-located in the byte
code and is unlikely to be lost. However, the approach is invasive, increases compilation time,
increases byte code size and, worse, may not scale well to large data since compilers often crash
when presented with source code files that are too large.

Another approach is to use a URL to make reference to the data file. This has the advantage
of enabling the code to work anywhere. However, the drawback is that such a change is invasive
(requiring a code change) and requires that the Internet be available. Moreover, we may not
always want to put our data on the Internet, where the world can see it. Another way we can
load our resource is through the class loader:

url = classLoader.getResource(resource);

Such an approach results in an invasive change to the code, to wit:

ClassLoader classLoader =

Thread.currentThread().getContextClassLoader();

URL url = classLoader.getResource("resources/bong.au"); File f = new

File(url.toURI()); System.out.println(f); UlawCodec ulc = new

UlawCodec(f);

Even worse, the instrument class loader keeps tracks of classes that it is loading, but it is
not keeping track of resources that it is loading.

Another solution is to employ a ResourceManager able to transfer over compressed data
when it is out of data, if the Internet is available, and otherwise checks the local disk for the
data. This too is both invasive and requires an Internet connection, when the resources are not
locally available.

8 Conclusion

Static dependency analysis provides a fast solution to creating a minimal set of Jar libraries and
Java source code, however, it fails for the use-case of dynamically loaded resources and classes.
Dynamic dependency analysis is able to detect the run-time loading of classes and provides a
good intermediate solution. However, it requires complete exploration of all execution paths.
Additionally, dynamic dependency analysis fails to find data resources with absolute pathnames.
Adding a class loader to Instrumentation in Java is unable to detect dynamically loaded resources
without some sort of a custom class loader.

The use of a ResourceManager to handle data may be a very good way to approach the
problem. The question of how this should be implemented, exactly, remains open. Ad-hoc
retrieval of individual files does not seem like sound software engineering, as testing may fail to
detect a missing resource.

In summary, static dependency analysis will miss reflection-loaded classes and data referred
to via local disk store. Instrumentation will detect reflection-loaded classes, but it too will miss
data files stored on local disk and referred to via absolute path names. Instrumentation will also
miss relative class loader references, as in:

ClassLoader classLoader =

Thread.currentThread().getContextClassLoader();

URL url = classLoader.getResource("resources/bong.au"); File f = new

File(url.toURI()); System.out.println(f); UlawCodec ulc = new

UlawCodec(f);

203



JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.3, N.3, 2018

The question of how to best detect the use of file-based resources at run-time remains a topic
of current research. Possible candidate approaches include a custom class loader or a resource
manager.

References

Sharan, K. (2014). Beginning java 8 fundamentals language syntax, arrays, data
types, objects, and regular expressions, Berkeley: CA Apress. Retrieved from
http://dx.doi.org.libdb.fairfield.edu/10.1007/978-1-4302-6653-2

’EA Agent Loader’ by Electronic Arts.
https://github.com/electronicarts/ea-agent-loader (last accessed Jun 22, 2018).

Lyon, D.A. (2010). Semantic Annotation for Java. Journal of Object Technology, 9 (3), 19-29.
http://www.docjava.com/pub/document/jot/v9n3.pdf

Lyon, D.A. (2008). I Resign! Resigning Jar Files with Initium. Journal of Object Technology,
7 (4), 9-27. http://www.docjava.com/pub/document/jot/v7n4.pdf

Lyon, D.A., Castellanos F. (2007). The Saverbeans Screensaver and Initium
RJS System Integration: Part 5. Journal of Object Technology, 6 (1), 35-57.
http://www.docjava.com/pub/document/jot/v6n1.pdf

Lyon, D.A., Castellanos F. (2006a). The Initium RJS Screensaver: Part 4, Automatic Deploy-
ment. Journal of Object Technology, 5 (8), 31-40.
http://www.docjava.com/pub/document/jot/v5n8.pdf

Lyon, D.A., Krepsztul P. & Castellanos F. (2006). Macintosh Screensaver in Java: Part 3.
Journal of Object Technology, 5 (7), 9-17
http://www.docjava.com/pub/document/jot/v5n7.pdf

Lyon, D.A., Castellanos F. (2006b). The Initium RJS Screensaver: Part 2, UNIX. Journal of
Object Technology, 5 (5), 7-15 http://www.docjava.com/pub/document/jot/v5n5.pdf

Lyon, D.A., Castellanos F. (2006c). The Initium RJS Screensaver: Part1, MS Windows. Journal
of Object Technology, 5 (4), 7-16 http://www.docjava.com/pub/document/jot/v5n4.pdf

Lyon, D.A. (2005). Resource Bundling for Distributed Computing. Journal of Object Technology,
4 (1), 45-58. http://www.docjava.com/pub/document/jot/resource.pdf

Lyon, D.A. (2004). Project Initium: Programmatic Deployment. Journal of Object Technology,
3 (8), 55-69.

Rodriguez-Prieto, O., Ortin, F., O’Shea, D. (2018). Efficient runtime aspect weav-
ing for java applications. Information and Software Technology, 100, 73-86.
http://www.sciencedirect.com/science/article/pii/S0950584918300521. Accessed
Jun 20, 2018.

Whaley, J., Martin, M.C., & Lam, M.S. (2002, July). Automatic extraction of object-oriented
component interfaces. In ACM SIGSOFT Software Engineering Notes, 27 (4), 218-228.

204


